Power-law Distributions in Information Science - Making the Case for Logarithmic Binning
نویسنده
چکیده
We suggest partial logarithmic binning as the method of choice for uncovering the nature of many distributions encountered in information science (IS). Logarithmic binning retrieves information and trends “not visible” in noisy power-law tails. We also argue that obtaining the exponent from logarithmically binned data using a simple least square method is in some cases warranted in addition to methods such as the maximum likelihood. We also show why often used cumulative distributions can make it difficult to distinguish noise from genuine features, and make it difficult to obtain an accurate power-law exponent of the underlying distribution. The treatment is non-technical, aimed at IS researchers with little or no background in mathematics.
منابع مشابه
Are human interactivity times lognormal?
In this paper, we are analyzing the interactivity time, defined as the duration between two consecutive tasks such as sending emails, collecting friends and followers and writing comments in online social networks (OSNs). The distributions of these times are heavy tailed and often described by a power-law distribution. However, powerlaw distributions usually only fit the heavy tail of empirical...
متن کاملUpper-truncated Power Law Distributions
Power law cumulative number-size distributions are widely used to describe the scaling properties of data sets and to establish scale invariance. We derive the relationships between the scaling exponents of non-cumulative and cumulative number-size distributions for linearly binned and logarithmically binned data. Cumulative number-size distributions for data sets of many natural phenomena exhi...
متن کاملFacts and artifacts in the blinking statistics of semiconductor nanocrystals.
Since its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in terms of probability distributions for durations of bright, or "on," states and dark, or "off," states. These distributions are obtained by binning photon counts in order to construct a time series for emission intensity and then applying a threshold to distinguish on state...
متن کاملCan Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics?
The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain acti...
متن کامل2 3 D ec 2 00 7 Descents and nodal load in scale - free networks
The load of a node in a network is the total traffic going through it when every node pair sustains a uniform bidirectional traffic between them on shortest paths. We show that nodal load can be expressed in terms of the more elementary notion of a node’s descents in breadth-first-search (BFS or shortest-path) trees, and study both the descent and nodal-load distributions in the case of scale-f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JASIST
دوره 61 شماره
صفحات -
تاریخ انتشار 2010